Trilogy of Research Domains at
eclat
As
eclat
stands for "
electrochemistry lab of advanced technologies
", we have two research axes:
Electrochemistry
as an abscissa and
Materials Chemistry
as an ordinate.
Three research domains do we have.
[Phase 1]
Synthesis of
Advanced Electroactive materials
for the state-of-the-art energy conversion and storage devices
[Phase 2]
Novel Energy devices
based on new electroactive pairs and new electrochemical principles for next generation
[Ground 0]
in situ
Electrochemical analysis
to provide electrochemically meaningful information on electrochemical systems.
Analogy between our research and Star Wars
Have you ever heard The original Trilogy of Star Wars? Maybe. The first film of the series was released in 1977.
A New Hope = New concept Energy devices
: To obtain higher energy and power densities, we need to create and use novel concepts and materials to enable enhanced energy devices. Our lab always respects a creative idea which would be a only hope for sustaining our society.
The Empire Strikes Back = Advanced Energy materials
: Even if we emphsized the developments of new concept devices, it would be still important to enhance the current energy devices because they would be still working after several tens of years. Therefore, we are trying to develop nanostructured materials for lithium ion batteries and to introduce new materials for supercapacitors.
Return of the Jedi =
in situ
Electrochemical analysis
: While everybody in the field of science and technology focuses on the issues related to impact factors and popular topics related to nano something or graphene blah blah, the basic should be considered always important. Electrochemistry is the background to make everyday's energy devices possible. Therefore, it would be very important to analyze energy devices from the electrochemical viewpoints.
[Ground 0] Electrochemistry: Who & Why?
Chemistry is a discipline to study the interactions between atoms and molecules. The interactions are dominantly governed by electrons.
Electrons are transferred from a molecule (A) to another (B) during chemical reactions where A is oxidized or loses electrons and simultaneously B is reduced or gains electrons:
A = A
+
+ e
-
B + e
-
(directly from A) = B
-
The electron transfer directly happens between the two molecules A and B. How can we control and ultimately utilize those electrons for our life?
Electrochemistry physically separate oxidants from reductants to block the direct electron transfer between them. Electrons detour through a circuit of electronic conductor:
A = A
+
+ e
-
B + e
-
(from A through a circuit) = B
-
Various energy conversion and storage deivces are based on electrochemistry:
Primary and secondary (rechargeable) batteries
Electrochemical capacitors (Ultracapacitors): Electric double layer capacitors (EDLC), Pseudocapacitors (Supercapacitors)
Fuel cells, Biofuel cells
Solar cells (especially, Dye-sensitized solar cells or DSSC)
Electrochromic devices
[Phase 1] Advanced Electroactive materials
[Phase 1]
As of now, three research domains do we have. As the most materials-chemistry-oriented domain, we have tried to develop and synthesize
advanced version of electroactive materials
including:
cathode and anode materials for
lithium ion batteries
pesudo-capacitive electrode materials for
supercapacitors
.
Solubility product (K
sp
) principle
for controlling morphology of lithium metal phosphates (LiMePO
4
) as a cathode material for lithium ion batteries
Evolution of a hollow sphere secondary structure of LiMePO
4
(Me = Fe, Cu, Ni) nanoparticles
Restricted Growth of LiMnPO
4
Nanoparticles Evolved from a Precursor Seed
The hypothesis of
Effective charge balancing
was proposed for explaining the effect of electronegative additives on cathode materials
Incorporation of Functional Dopants
enables conducting polymers (CPs) revisited by gracing CPs with additional functionality. Refer to an article below titled by
New Era for Conducting Polymers: Incorportaion of functional dopants
.
Graphene-doped Conducting Polymers for Pseudocapacitors with a Miscible Electron Transfer Interface
[Phase 2] New concept Energy devices
[Phase 2]
Even if we are focusing on enhancing the devices that many researchers have been studying, our grand direction of research are shifting from "already well known" to
"new concept" energy devices
.
For the first example, we are devising
a solar cell/battery hybrid device
that directly converts solar energy to chemical energy like photosynthesis.
Also,
new chemistry
is being under development for energy storage devices. For example, think about how we can use the rigorous reactions between aluminum and iodine in presence of water. Electrochemistry enables uncontrollable reactions controlled.
[Back to Ground 0]
in situ
electrochemical analysis
[Ground 0]
The most dominant background behind our lab is Electrochemistry. From the basic viewpoint of electrochemists, we are developing
in situ
electrochemical analysis
on energy materials and devices.
Electrochemical Porosimetry (ECP)
: to get electrochemically meaningful information from electrodes: Do you think that the pore size distribution of porous electrode materials obtained by using N
2
adsorption is electrochemically meaningful? Please refer to
the homepage of ECP (
http://home.postech.ac.kr/~hksong/
).
Fourier Transformed Electrochemical Impedance Spectroscopy (FT-EiS)
: The methodology was first invented by Prof. Su-Moon Park, the most eminent korean electrochemistry, now working in UNIST. By the help of the great electrochemist, we are extracting valuable kinetic information from electrochemical energy conversion and storage systems. The power of FT-EiS originates from its fast measurement speed that make it possible to investigate the dynamics of electrochemical reactions instead of thermodynamics.
Studies on doping/dedoping processes of conducting polymers doped with an electroactive dopants
Suppression of the loss of an electroactive dopant from polypyrrole by using a non-aqueous electrolyte of dopant-phobicity
Another eclat! Lovely!
8
9
10
11
12
list
1
Copyright 1999-2023
Zeroboard
/ skin by
itsmo
|
eclat
|
i-School of Green Energy
|
UNIST
|
Ulsan
689-798 |
Korea
|